
Eager execution
CS 20: TensorFlow for Deep Learning Research

Lecture 4
1/24/2017

1

2

3

● Assignment 1 is out! (due 1/31)
● Gitter chatroom

https://gitter.im/stanford-tensorflow-tutorials

Agenda

Eager execution

Linear regression in eager

Interactive Coding!

4

Eager Execution
Presented by Akshay Agrawal
akshayka@{cs.stanford.edu, google.com}

6

TensorFlow Today: Declarative (Graphs)

7

Graphs are ...
Optimizable
● automatic buffer reuse
● constant folding
● inter-op parallelism
● automatic trade-off between compute and memory

Deployable
● the Graph is an intermediate representation for models

Rewritable
● experiment with automatic device placement or quantization

8

But graphs are also ...
Difficult to debug
● errors are reported long after graph construction
● execution cannot be debugged with pdb or print statements

Un-Pythonic
● writing a TensorFlow program is an exercise in metaprogramming
● control flow (e.g., tf.while_loop) differs from Python
● can't easily mix graph construction with custom data structures

9

10

What if...

You could execute TensorFlow operations imperatively,
directly from Python?

Eager Execution
"A NumPy-like library for numerical computation with
support for GPU acceleration and automatic
differentiation, and a flexible platform for machine
learning research and experimentation."

- the eager execution user guide

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md

Live Demo

$python
import tensorflow # version >= 1.50
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()

i = tf.constant(0)
while i < 1000:
 i = tf.add(i, 1)
 print("I could do this all day! %d" % i)

Key Advantages
● Compatible with Python debugging tools

○ pdb.set_trace() to your heart's content!
● Provides immediate error reporting
● Permits use of Python data structures

○ e.g., for structured input
● Enables easy, Pythonic control flow

○ if statements, for loops, recursion, oh my!

15

16

Eager execution
simplifies your code

You no longer need to worry about ...
1. placeholders
2. sessions
3. control dependencies
4. "lazy loading"
5. {name, variable, op} scopes

Boilerplate
x = tf.placeholder(tf.float32, shape=[1, 1])

m = tf.matmul(x, x)

print(m)

Tensor("MatMul:0", shape=(1, 1), dtype=float32)

with tf.Session() as sess:

 m_out = sess.run(m, feed_dict={x: [[2.]]})

print(m_out)

[[4.]] Code like this...

Boilerplate
x = [[2.]] # No need for placeholders!

m = tf.matmul(x, x)

print(m) # No sessions!

tf.Tensor([[4.]], shape=(1, 1), dtype=float32)

Becomes this

"Lazy Loading"
x = tf.random_uniform([2, 2])

with tf.Session() as sess:

 for i in range(x.shape[0]):

 for j in range(x.shape[1]):

 print(sess.run(x[i, j]))

Each iteration
adds nodes to the graph

"Lazy Loading"
x = tf.random_uniform([2, 2])

for i in range(x.shape[0]):

 for j in range(x.shape[1]):

 print(x[i, j])

Tensors Act Like NumPy Arrays
x = tf.constant([1.0, 2.0, 3.0])

Tensors are backed by NumPy arrays

assert type(x.numpy()) == np.ndarray

squared = np.square(x) # Tensors are compatible with NumPy functions

Tensors are iterable!

for i in x:

 print(i)

for i in range(x.shape[0]):

 for j in range(x.shape[1]):

 print(x[i, j])

Caveat: use tf.equal to
compare Tensors, not ==

Gradients

Gradients
Automatic differentiation is built into eager execution

Under the hood ...

● Operations are recorded on a tape
● The tape is played back to compute gradients

○ This is reverse-mode differentiation (backpropagation).

26

Gradients
def square(x):

 return x ** 2

grad = tfe.gradients_function(square)

print(square(3.)) # tf.Tensor(9., shape=(), dtype=float32)

print(grad(3.)) # [tf.Tensor(6., shape=(), dtype=float32))]

xDifferentiate w.r.t. input of
square

27

Gradients
x = tfe.Variable(2.0)

def loss(y):

 return (y - x ** 2) ** 2

grad = tfe.implicit_gradients(loss)

print(loss(7.)) # tf.Tensor(9., shape=(), dtype=float32)

print(grad(7.)) # [(<tf.Tensor: -24.0, shape=(), dtype=float32>,

 <tf.Variable 'Variable:0' shape=()

 dtype=float32, numpy=2.0>)]

xDifferentiate w.r.t. variables
used to compute loss

xUse tfe.Variable when
eager execution is enabled.

Gradients
APIs for computing gradients work even when eager execution is not enabled
● tfe.gradients_function()
● tfe.value_and_gradients_function()
● tfe.implicit_gradients()
● tfe.implicit_value_and_gradients()

See the user guide for documentation

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md

Huber Regression
with Eager Execution

29

Interactive Coding

04_regression_eager_starter.py

30

It's not that different

A Collection of Operations
TensorFlow = Operation Kernels + Execution
● Graph construction: Execute compositions of operations with Sessions
● Eager execution: Execute compositions with Python

A Collection of Operations
Majority of TF API works regardless of whether eager execution is enabled.

● But, when eager execution is enabled …
○ prefer tfe.Variable under eager execution (compatible with graph construction)
○ manage your own variable storage — variable collections are not supported!
○ use tf.contrib.summary
○ use tfe.Iterator to iterate over datasets under eager execution
○ prefer object-oriented layers (e.g., tf.layers.Dense)

■ functional layers (e.g., tf.layers.dense) only work if wrapped in tfe.make_template
○ prefer tfe.py_func over tf.py_func

● See the user guide for details and updates

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md

What if I like graphs?
Graphs are ...

● Optimizable
○ automatic buffer reuse
○ constant folding
○ inter-op parallelism
○ automatic trade-off between compute and memory

● Deployable
○ the Graph is an intermediate representation for models

● Rewritable
○ experiment with automatic device placement or quantization

Imperative to declarative and back
● Write model definition code once

○ The same code can execute operations in one Python process and
construct graphs in another (see user guide/examples)

● Checkpoints are compatible
○ Train eagerly, checkpoint, load in a graph, or vice-versa

● Create graphs while eager execution is enabled:
○ tfe.defun: "Compile" computation into graphs and execute them.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md#interoperating-with-graphs

So when should I use eager
execution?

Use eager if you're ...
● a researcher and want a flexible framework

○ python control flow and data structures enable experimentation
● developing a new model

○ immediate error reporting simplifies debugging
● new to TensorFlow

○ eager execution lets you explore the TF API in the Python REPL

Status
● Available in version 1.5 of TensorFlow (import tf.contrib.eager as tfe)
● Single GPU, ResNet benchmark performance comparable to graphs
● Under active development

○ Overheads on smaller operations are significant
○ Distributed support is in the works
○ Not all TF APIs are eager-compatible

Further reading
Read the user guide to learn about …
● High-level, Keras-like APIs for constructing models

○ tfe.Network, tf.layers.Layer

● Checkpointing variables
● Summaries and tensorboard
● Custom gradients for numerical stability
● Using GPUs

Check out the examples folder for idiomatic code

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples

Links
● Research blog post
● README
● User guide
● Idiomatic model examples
● Survey paper on autodiff for machine learning
● Github issues page

○ Found a bug? Want a feature? Create an issue!

● Feedback: akshayka@google.com

https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples
https://arxiv.org/pdf/1502.05767.pdf
https://github.com/tensorflow/tensorflow/labels/comp%3Aeager
mailto:akshayka@google.com

Next class

Variable sharing

Manage experiments

Autodiff

Feedback: huyenn@stanford.edu

Thanks!

41

mailto:huyenn@stanford.edu

