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● Assignment 1 is out! (due 1/31)
● Gitter chatroom

https://gitter.im/stanford-tensorflow-tutorials


Agenda

Eager execution

Linear regression in eager

Interactive Coding!
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Eager Execution
Presented by Akshay Agrawal
akshayka@{cs.stanford.edu, google.com}
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TensorFlow Today: Declarative (Graphs)
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Graphs are ...
Optimizable
● automatic buffer reuse
● constant folding
● inter-op parallelism
● automatic trade-off between compute and memory

Deployable
● the Graph is an intermediate representation for models

Rewritable
● experiment with automatic device placement or quantization
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But graphs are also ...
Difficult to debug
● errors are reported long after graph construction
● execution cannot be debugged with pdb or print statements

Un-Pythonic
● writing a TensorFlow program is an exercise in metaprogramming
● control flow (e.g., tf.while_loop) differs from Python
● can't easily mix graph construction with custom data structures
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What if...

You could execute TensorFlow operations imperatively,  
directly from Python?



Eager Execution
"A NumPy-like library for numerical computation with 
support for GPU acceleration and automatic 
differentiation, and a flexible platform for machine 
learning research and experimentation."

- the eager execution user guide

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md


Live Demo

$python
import tensorflow # version >= 1.50
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()



i = tf.constant(0)   
while i < 1000:
  i = tf.add(i, 1)
  print("I could do this all day! %d" % i)

Key Advantages
● Compatible with Python debugging tools

○ pdb.set_trace() to your heart's content!
● Provides immediate error reporting
● Permits use of Python data structures

○ e.g., for structured input
● Enables easy, Pythonic control flow

○ if statements, for loops, recursion, oh my!   
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Eager execution
simplifies your code



You no longer need to worry about ...
1. placeholders
2. sessions
3. control dependencies
4. "lazy loading"
5. {name, variable, op} scopes



Boilerplate
x = tf.placeholder(tf.float32, shape=[1, 1])

m = tf.matmul(x, x)

print(m)

# Tensor("MatMul:0", shape=(1, 1), dtype=float32)

with tf.Session() as sess:

  m_out = sess.run(m, feed_dict={x: [[2.]]})

print(m_out)

# [[4.]] Code like this...



Boilerplate
x = [[2.]]  # No need for placeholders!

m = tf.matmul(x, x)

print(m)  # No sessions!

# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)

Becomes this



"Lazy Loading"
x = tf.random_uniform([2, 2])

with tf.Session() as sess:

  for i in range(x.shape[0]):

    for j in range(x.shape[1]):

      print(sess.run(x[i, j]))

Each iteration 
adds nodes to the graph



"Lazy Loading"
x = tf.random_uniform([2, 2])

for i in range(x.shape[0]):

  for j in range(x.shape[1]):

    print(x[i, j])



Tensors Act Like NumPy Arrays
x = tf.constant([1.0, 2.0, 3.0])

# Tensors are backed by NumPy arrays

assert type(x.numpy()) == np.ndarray

squared = np.square(x) # Tensors are compatible with NumPy functions

 

# Tensors are iterable!

for i in x:

  print(i)

for i in range(x.shape[0]):

  for j in range(x.shape[1]):

    print(x[i, j])

Caveat: use tf.equal to 
compare Tensors, not ==



Gradients



Gradients
Automatic differentiation is built into eager execution

Under the hood ...

● Operations are recorded on a tape
● The tape is played back to compute gradients

○ This is reverse-mode differentiation (backpropagation).
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Gradients
def square(x):

  return x ** 2

grad = tfe.gradients_function(square)

print(square(3.))    # tf.Tensor(9., shape=(), dtype=float32)

print(grad(3.))      # [tf.Tensor(6., shape=(), dtype=float32))]

xDifferentiate w.r.t. input of 
square
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Gradients
x = tfe.Variable(2.0)

def loss(y):

  return (y - x ** 2) ** 2

grad = tfe.implicit_gradients(loss)

print(loss(7.))  # tf.Tensor(9., shape=(), dtype=float32)

print(grad(7.))  # [(<tf.Tensor: -24.0, shape=(), dtype=float32>, 

                     <tf.Variable 'Variable:0' shape=()                

                      dtype=float32, numpy=2.0>)]

                     

xDifferentiate w.r.t. variables 
used to compute loss

xUse tfe.Variable when 
eager execution is enabled.



Gradients
APIs for computing gradients work even when eager execution is not enabled
● tfe.gradients_function()
● tfe.value_and_gradients_function()
● tfe.implicit_gradients()
● tfe.implicit_value_and_gradients()

See the user guide for documentation

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md


Huber Regression 
with Eager Execution
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Interactive Coding

04_regression_eager_starter.py
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It's not that different



A Collection of Operations
TensorFlow = Operation Kernels + Execution
● Graph construction: Execute compositions of operations with Sessions
● Eager execution: Execute compositions with Python 



A Collection of Operations
Majority of TF API works regardless of whether eager execution is enabled.

● But, when eager execution is enabled  …
○ prefer tfe.Variable under eager execution (compatible with graph construction)
○ manage your own variable storage — variable collections are not supported!
○ use tf.contrib.summary
○ use tfe.Iterator to iterate over datasets under eager execution
○ prefer object-oriented layers (e.g., tf.layers.Dense) 

■ functional layers (e.g., tf.layers.dense) only work if wrapped in tfe.make_template
○ prefer tfe.py_func over tf.py_func

● See the user guide for details and updates

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md


What if I like graphs?
Graphs are ...

● Optimizable
○ automatic buffer reuse
○ constant folding
○ inter-op parallelism
○ automatic trade-off between compute and memory

● Deployable
○ the Graph is an intermediate representation for models

● Rewritable
○ experiment with automatic device placement or quantization



Imperative to declarative and back
● Write model definition code once

○ The same code can execute operations in one Python process and 
construct graphs in another (see user guide/examples)

● Checkpoints are compatible
○ Train eagerly, checkpoint, load in a graph, or vice-versa

● Create graphs while eager execution is enabled:
○ tfe.defun: "Compile" computation into graphs and execute them.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md#interoperating-with-graphs


So when should I use eager 
execution?



Use eager if you're ...
● a researcher and want a flexible framework

○ python control flow and data structures enable experimentation
● developing a new model

○ immediate error reporting simplifies debugging
● new to TensorFlow

○ eager execution lets you explore the TF API in the Python REPL



Status
● Available in version 1.5 of TensorFlow (import tf.contrib.eager as tfe)
● Single GPU, ResNet benchmark performance comparable to graphs
● Under active development

○ Overheads on smaller operations are significant
○ Distributed support is in the works
○ Not all TF APIs are eager-compatible



Further reading 
Read the user guide to learn about …
● High-level, Keras-like APIs for constructing models

○ tfe.Network, tf.layers.Layer

● Checkpointing variables
● Summaries and tensorboard
● Custom gradients for numerical stability
● Using GPUs

Check out the examples folder for idiomatic code

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples


Links
● Research blog post
● README
● User guide
● Idiomatic model examples 
● Survey paper on autodiff for machine learning
● Github issues page

○ Found a bug? Want a feature? Create an issue!

● Feedback: akshayka@google.com

https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/g3doc/guide.md
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples
https://arxiv.org/pdf/1502.05767.pdf
https://github.com/tensorflow/tensorflow/labels/comp%3Aeager
mailto:akshayka@google.com


Next class

Variable sharing

Manage experiments

Autodiff

Feedback: huyenn@stanford.edu

Thanks!
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